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SUMMARY

Two statistics for detecting outliers in designed experiments with correlated errors have been developed. These statistics
are Cook-statistic and AP-statistic. General expressions of these statistics for detecting any ¢ outliers have been obtained. Equal
correlation structure has been considered for general variance-covariance matrix. Developed Cook-statistic has been illustrated
with an example. However, case of occurrence of a single outlier has been considered in the example.
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1. INTRODUCTION

The presence of outlier in the data is the most
serious illness in any data set. The analysis of data from
designed experiments is valid only when the
assumptions like normality and homogeneity of error
variances hold. The departures from these assumptions
may take place in presence of outlier(s). Therefore, it
is important to detect and handle the outlier(s)
efficiently. However, most of the studies thus far
conducted in design of experiment to detect outliers
have been restricted to models having uncorrelated
disturbances with constant variances. Bhar and Gupta
(2001) investigated the problem of outliers in block
designs and modified the Cook-statistic (Cook 1977,
1979), Q,-statistic (Gentleman and Wilk 1975) and 4P-
statistic (Andrews and Pregibon 1978) for detection of
outliers in experimental data. Some more reference on
outliers in block designs are due to Bhar and Gupta
(2003), Sarker et al. (2003), Sarker et al. (2005), Parsad
et al. (2008) and Bhar and Ojha (2014). A little bit
different kind of study on outlier in designed
experiments is found in Ghosh (1983). He considered
the measures for detecting the influential observations
w.r.t. one or several parameters of interest at the design
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stage. He considered Cook-statistic for detecting the
influential observations at the inference stage. All these
literature dealing with the problem of outliers in block
designs are for spherical error structure. But it has been
frequently observed, the dispersion matrix may not
always be spherical. In designed experiments, it is
generally assumed that the observations are
independently and identically distributed. However,
there are many experimental situations in which the
assumption of independence of observations gets
violated. In field experiments, the observations are
mutually correlated through some systematic pattern of
environmental variations. For example, plots occurring
close together within a field are well known to be more
similar than plots occurring far away from each other.
Thus in field experiments, blocks are often formed
using adjacent plots within a field. Whenever spatial
contiguity is used as a criterion for blocking, it is often
the case that the experimental units occurring close
together within spatial blocks created are correlated. We
have a vast literature on design and analysis of
experiments in the presence of correlated errors in
general. For an excellent review references may be
made to Williams (1952), Atkinson (1969), Berenblut
and Webb (1974), Bartlett (1978), Herzberg (1982),
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Wilkinson et al. (1983). Different types of correlation
structures that may exist among the observations within
a block are nearest neighbour, autoregressive and equi-
correlated observations, etc. In such cases it is necessary
to develop methodology to detect outliers. Some work
on detection of outliers in linear regression with
correlated errors are due to Schall and Dunne (1991),
Martin (1992), Kim and Huggins (1998) and Sen Roy
and Guria (2004, 2009). However, it seems that no work
for detection of outliers in designed experiments with
correlated errors is available in the literature. Test
statistics as available in literature for regression analysis
cannot be applied directly to designed experiments,
because of rank deficiency problem of its design matrix.
In the present investigation, Cook-statistic and AP-
statistic has been developed for detecting any 7 outliers
from design of experiments conducted using a block
design when errors are correlated.

In Section 2, these statistics are developed for
detecting any ¢ outliers for designed experiments with
correlated errors. In Section 3, a particular type of
correlation structure has been considered and its
estimation procedure is given. In Section 4, an example
is given to illustrate the procedure so developed under
Section 2. Throughout we use 1, to denote an n-
component vector of ones and 1, an identity matrix of
order n. Further A’, A~ and A" respectively denote the
transpose, a generalized inverse (g-inverse) and the
Moore-Penrose inverse of a matrix A.

2. TEST STATISTICS FOR DETECTION OF
OUTLIERS

Consider the general linear model for an
experimental design d (say),

y=ul, +Az+D'B+e (hH

where y is an n x 1 vector of observations, 1, is the n
dimensional column vector of all elements unity, A’ is
an n x v design matrix for treatment effects, D' is an n
x b design matrix of block effects, T is a v x 1 vector
of treatment effects, and B is a b x 1 vector of block
effects, u is general mean and € is the vector of random
errors. We have A'l =1 =D'1,, Al_=r, D1 =k,
where r = (|, 7y, ..., 7)) and k = (k,, k,, ... k,)" are the
vectors of replications and block sizes respectively. We
also assume that E(g) = 0 and D(g) = Q. The dispersion
matrix Q is positive definite and symmetric. We also
assume that the variance-covariance matrix of € for the

j™ block is Zj for j=1,2,..., b, where 2]. is a kj X kj
positive definite matrix. Thus Q = diag(Z,, Z,,..., Z)).
That is, it is assumed that the observations belonging
to the same block are correlated and they are
uncorrelated when they belong to different blocks.

Now by applying Aitkin’s transformation, we
rewrite the model (1) as

Q—I/Zy — },I.Q_l/zl + Q—1/2 AT + Q—1/2D rB + 9—1/28. (2)

From (2) we obtain on eliminating B and u, the
equations involving only T as

Cr=Q, 3)
where
C,=(AQA'- AQ'D'(DQ'DY DAY = A@A(;i)
Q.= AQly - AQ'D'(DQ D) 'DQy) = Ady, (5)
and
O=Q'!'-Q'DDQ'DYDQ. (6)

It is easy to verify that C_is symmetric with row
sums and column sums equal to zero.

Now writing A' = (1, A" D'), we denote.
V=1 -XQ'(X'Q'X)" Q'X'= D - dA'C AD.(7)
Then we define a set of residuals under model (1)
as
r'=Vy (8)

Now the following result can easily be proved
(Bhar and Gupta 2001).

Theorem 1
(i) EQ)=C;1
(i) D) =C,

We assume that the design d considered here is
connected, i.e., all (v — 1) orthonormalized contrasts of
parameters of t are estimable or equivalently Rank (C))
= v — 1. Let the set of all (v — 1) orthonormalized
contrasts of parameters of T be given by Pt. Where the
matrix P is of dimension (v — 1) x v and such that
PP' = L and PP =1 —(1/v) J. “

The best linear estimator of P 7t is given by Pz
where T is any solution of the normal equations (3).

Hence Pt =PC}Q,.
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Since row sums and column sums of C_ is zero,

ie,C_ 1 =1 C_=0,the dispersion matrix of PT can

be written as (Gupta and Mukerjee 1989).
D(Pz)=(PC,P')L. (10)
2.1 Cook-statistic

Cook (1977, 1979) developed a statistic to detect
outliers in linear regression model which is actually a
measure of distance between the parameter estimates
obtained from the full model and parameter estimates
obtained after deleting the suspected outliers. On this
line Bhar and Gupta (2001) modified this statistic for
detecting outliers in designed experiments and when the
experimenter’s interest is in estimation of some
functions of parameters of interest. They developed this
statistic when the dispersion matrix Q =1 o?. Consider
the linear model (1) in which Q =1 o If any ¢
observations are suspected to be outliers, then the Cook-
statistic for the set of contrasts Pt is given by (Bhar
and Gupta 2001),

b - (Pz-Pz,))[D(PD] ' (PT-P7) "
! Rank[D(P?)] (h

where P1 is the least squares estimator of Pt, P17, is
the least squares estimator of Pt obtained after deleting
the suspected ¢ outlying observations.

Thus to obtain Cook-statistic, we have to obtain
the estimate of Pt after deleting the suspected outlying
observations. To obtain this estimate we need to
estimate Pt after deleting the suspected # outliers in the
model with correlated errors. Now we write the model
after deleting these ¢ outlying observations as

Yoo = Mo oyt A% %o ¥ DBy * 8y (12)
where Yo has (n-f) observations, Yoy 1( iy A'( iy D '(t) and
€, have (n-f) rows. The parameters My T and B(t)
denote that they are obtained after deleting ¢
observations. The variance-covariance matrix of &
under this model is denoted by Q. indicating that this
is obtained after deleting # rows and ¢ columns. We
assume that any 7 observations from the » observations
are outliers in the sense that expected values of these
observations are shifted from the expected value of
other observations. Without loss of generality, we
assume that the first 7 observations are outliers. Further
it is also assumed that the design remains connected
after deletion of ¢ observations.

We now define a matrix A =1, - U(U'U)'U/,
where U= (u,, u,, ..., u) and u, = (0,0, ..., 1G™, ..., 0,
0) an n-component vector with 1 in the j position if
the /™ observation is an outlier and all other elements
as zero. The matrix A is symmetric and idempotent.
Then the model (12) can alternatively be written as

AQ 2y = UAQ 121 + AQ2A" + AQ2D'B
+ AQ 1% (13)
If we denote the treatment effects under this model
by 7, then,
Cany Ty = Quoy (14)
where

C_ = AQ12AQ-12A" — AO12AQ- 12D I(DQ—I/Z

Rl AQ—l/ZD r)—lDQ—l/ZAQ—l/ZA 4

On simplification, we get,

Cr,) = C,— ADU'(UDU') 'UDA (15)
Similarly
Q,, = Q,— ADU'(UDU ) 'Uy. (16)
Theorem 2

The difference between the estimators of contrasts
in T under the model (1) and (12), i.e., P1—P%, can
be expressed as

PT- P%(t) = PC:A®U'(UVU Yovy  (17)
Proof

A Moore-Penrose inverse of
Cr(t)= C.— ADU(U'®U)'"U'DA’ is given by

Ct,) = C:+CtADU(U'DU — U'®D'C: ADU')!
U'DA'C.
Now U'FU — U'FD'C; DFU = U'(F - FD'C#
A®)U = U'VUC:.

Thus C};, = C: + C:AOU/(U'QU)!
U’ ®D'C:.
Hence,
P7,, =PC},, Q,,=P(C+ C:DFUU'VU)'!
U'FD'CH)Q,, (18)

Now using the value of Qr(t) as given in (16) in
(18), we get
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Pt = PC:Q,A®U(U'VU) 'U'®A’'C:Q,~-PC;
A®U(U'®U)'U'Dy - PC: AOU(U'VU)!
U'®A C: AOU(U'DU) ! U'dy

= PC: ADU(U'VU) TU'DA’ C ADy— PC#
ADU(U'DUY'U'Dy —PCt AOU(U'VU)!
U'®A' Ct AOU(U'®U) U Dy

= PCQ, + PC: AOU(U'VU)"'U'®A' Ct
A® - QUU'DU)'U'D)y — PC: ADU
(U'®U)'U'Dy

= PC:Q, + PC: AOU(U'VU)Y U@ - V)y —
PC: AOU(U'VU) U@ — V)U(U'DU)!
U'Dy— PC: ADU(U'OU) U Dy

= PC:Q, +PC: AOU(U'VU) 'U'®y — PC}
A®U(U'VU)'U'Vy —PCt AOU(U'VU)!
U'®y PC; AQU(U'®U)'U'Qy — PC} AD
UU'oU) 'U'Dy
= PC}Q,—PC} AOU(U'VU)'U'Vy
= pz — PC AOU(U'VU)'U"Vy
Hence the proof.

Now following the definition of Cook-statistic for
uncorrelated error (Bhar and Gupta 2001) as given in
(11) we give the Cook-statistic for the set of contrasts
Pt of T in designed experiments with correlated error
for ¢ outliers as

_ (PR-Pi,)) DRI (PE-PR,)
D, = Rank[D(P%)]

_ YVUU'VU)'U®AC!PTD(P?)]PC;AGU(U'VU) ' U'Vy

v-1
(19)

Now since C_ L=1 C, =0, using (10), we get
5 y'VUU'VU) 'UDA'C A®U(U'VU) 1 U'Vy

! (v-1
(20)
¥ (U'VU) IU'®A'C:A®U(U'VU) Ir*
1= v-1) ’ (2 1)

where 1 = U'Vy, vector of residuals corresponding to
outlying observations. (22)

This follows approximately an F-distribution with
v—1landn—v—b + 1 degrees of freedom (Bhar and
Gupta 2001).

Now we consider a special case of occurrence of
a single outlier.

2.1.1 Single outlier

Without loss of generality, we assume that the first
observation in the first block is an outlier, then from
(21) we get the Cook-statistic for the present case as

. \2

T

where v, is the first diagonal element of the matrix V
as defined in (7), A, is the first diagonal element of
matrix H = ®A'Ct A® and 5 is the first element of
r, as defined in (22).

2.2 AP-statistic

Bhar and Gupta (2001) also defined another test
statistic which is very useful in detecting outlier(s) in
experimental data. This statistic is also useful in
determining the degree of influence of outlier(s) on
parameter estimation. Consider again the model (1) in
which X has full column rank and define a matrix Z as
Z = (X U), where X and U are as defined before. Then
AP-statistic given by Andrews and Pregibon (1978) is
defined as

Z*’Z*
XX (24)

AP =

where X* = (X y) and Z* = (X U y) and |A| denotes
determinant value of A. The quantity (1-4P,)
corresponds to the proportion of volume generated by
X" attributed to the 7 outlying observations. Small
values of AP, statistic are associated with deviant or
influential observations. Bhar and Gupta (2001)
modified this statistic for application into designed
experiments with uncorrelated errors. We also modified
this statistic for application in designed experiments
with correlated errors as

3/ 4 —1 ¥
AP, =| U'VU|(1——r’ u YU) i ) (25)

y'Vy

where 1 and V are as defined earlier.
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2.2.1 Single outlier

Without loss of generality, we assume that the first
observation in the first block is an outlier, then from
(25) we get the AP -statistic for a single outlier as

v 12
APt=vn(1— o J (26)

7
yVy
where v, and 5" are as defined earlier.

3. CORRELATION STRUCTURE AND ITS
ESTIMATION

As mentioned earlier that in designed experiments,
there are many experimental situations in which the
assumption of independence of observations gets
violated. In field experiments, the observations are
mutually correlated through some systematic pattern of
environmental variations. We now discuss various types
of such correlation structures. The correlation structures
that may exist among the observations within a block
are nearest neighbour, autoregressive and equi-
correlated etc. However for illustration purpose, we
consider only equi-correlation structure for the present
study. In case of the equi-correlation structure, it is
assumed that the same amount of correlation (p) exists
between the observations within a block. The amount
of correlation is constant for all pair of observations
taken from a block. The correlation between (;;, ;)
in the same block is same.

1, ift=t

Corr(yi, yiy) =
Yjes Vi) pj, otherwise

@7

where ¢, t' =1, 2, ..., kj, j=1,2 band o, is the
correlation coefficient in the j block.

That is,
b P PP
R A
N
o (28)
pi P P 1P
o; PP P

To calculate Cook-statistic, we need to estimate Q.
This involved a particular structure of correlation of
blocks. Therefore an estimate of the correlation
coefficient p is required. One way to estimate this

coefficient is to apply auto-correlation method. Thus p;
for j block can be estimated by the following formulae.

A — 1=2
Pty (29)
2
t-1
t=2

and estimate of o> can be obtained as 62 = r'r/(n —
p), where r is the vector of residuals as obtained from
the model (1) without considering the correlation
structure, i.e., r = (I, — X(X'X)"X)y and r, is the 1"
component of these residuals in the j block.

4. ILLUSTRATION

In this Section we illustrate this statistic through
an example. An experiment with 5 manurial treatments
was conducted in the randomized complete block
(RCB) design with 4 replications in 2001 to evaluate
the N, P and K status in the soil on paddy (net plot size
20.00 m x 5.00 m). The treatment details are as follows:

Treatment 1(T,) = Control
Treatment 2(T,) = 125 kg/ha of Nitrogen (N)

Treatment 3(T;) = 125 kg/ha of N + 50 kg/ha of
Phosphorous (P,0,)

Treatment 4(T,) = 125 kg/ha of N + 50 kg/ha of
Potash (K,0)

Treatment 5(T;) = 125 kg/ha of N + 50 kg/ha of
P,O; + 50 kg/ha of K,O
The data is given in Table 1.
Table 1. Grain yield

Block 1| Block 2 | Block 3 | Block 4
Treatment 1 | 27.80 28.40 28.80 [ 28.60
Treatment 2 | 29.80 31.20 31.60 | 29.80
Treatment 3 | 31.20 30.60 33.20 32.40
Treatment 4 | 32.60 32.60 33.60 34.40
Treatment S | 32.80 33.80 33.00 33.60

The usual analysis of this data was carried out by
considering that there is no correlation among the
observations. The ANOVA is presented in Table 2.
From the table, it is seen that the treatment effects are
highly significant and block effects are significant at
around 9% level of significance.
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Table 2. ANOVA with original data

Source Degrees of | Sum of | Mean F Prob. > F
Freedom | Squares | Square | Value

Treatment 4 68.088 | 17.022]33.289 |<0.000001

Block 3 4.134 1.378 | 2.6949 |0.0929276

Error 12 6.136 0.511

Corrected 19 78.358

Total

becomes non-orthogonal. We analyzed this non-
orthogonal data by GLM. Appropriate programme is
written in IML of SAS software. The result is presented
in Table 5.

The treatment effects remain highly significant,
whereas block effects now become significant at about
4% level of significance.

Table 4. Cook-statistic

We then calculated block wise equal correlation
coefficients for observations. These correlation
coefficients are —0.23 for the first block, —0.19 for the
second block, 0.18 for the third block and 0.01 for the
fourth block. Mean square error estimate under usual
analysis has been used as the estimate of 6°. This value
is 0.511. Using these values the variance-covariance
matrix has been computed. This variance-covariance
matrix has been used to re-analyze the data under
correlated error structure. The result of this analysis is
presented in Table 3. From this table it is seen that
treatment effects remain highly significant, whereas the
significance level of block effects has been reduced to
6%.

Table 3. ANOVA with correlated observations

Source Degrees of | Sum of | Mean F Prob. > F
Freedom | Squares | Square | Value

Treatment 4 128.806 | 32.201 |16.735 0.00007

Block 3 18.640 | 6.213 | 3.229 0.060

Error 12 23.089 1.924

Corrected 19 170.536

Total

We now applied Cook-statistic to detect outliers,
if any. These Cook-statistics are presented in Table 4.
Cook-statistics are worked out by writing programme
in SAS IML. The distribution of Cook-statistic is
approximately F-distribution with 3 and 12 degrees of
freedom. The highest value of Cook-statistic is 0.33476
corresponding to observation number 17. This
observation corresponds to the treatment number 2 in
the fourth block. Comparing with F-distribution, we
find that this observation is highly significant
(Probability value of F(0.33476, 3, 12) = 0.15).

We then remove this observation and re-analyze
the data under correlated error structure. Note that
design remains connected after deletion of any single
observation. Once a data point is deleted, the design

Observation | Cook-Statistic [ Observation | Cook-Statistic
No. No.
1 0.00077 11 0.00866
2 0.00366 12 0.10154
3 0.00136 13 0.25053
4 0.00064 14 0.03421
5 0.00902 15 0.29287
6 0.0064 16 0.00079
7 0.10782 17 0.33476
8 0.24795 18 0.01055
9 0.05322 19 0.19619
10 0.10257 20 0.00866

Table 5. ANOVA with correlated observations after
deletion of observation. No. 17

Source Degrees of | Sum of | Mean F Prob. > F
Freedom |Squares | Square | Value

Treatment 4 163.809 [40.952 | 16.494 | 0.0001
Block 3 29.375 | 9.791 | 3.943 | 0.039
Error 12 27.310 | 2.482
Corrected 19 220.495
Total
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